{ "id": "2210.13998", "version": "v1", "published": "2022-10-25T13:11:53.000Z", "updated": "2022-10-25T13:11:53.000Z", "title": "Ramsey numbers of large even cycles and fans", "authors": [ "Chunlin You", "Qizhong Lin" ], "categories": [ "math.CO" ], "abstract": "For graphs $F$ and $H$, the Ramsey number $R(F, H)$ is the smallest positive integer $N$ such that any red/blue edge coloring of $K_N$ contains either a red $F$ or a blue $H$. Let $C_n$ be a cycle of length $n$ and $F_n$ be a fan consisting of $n$ triangles all sharing a common vertex. In this paper, we prove that for all sufficiently large $n$, \\[ R(C_{2\\lfloor an\\rfloor}, F_n)= \\left\\{ \\begin{array}{ll} (2+2a+o(1))n & \\textrm{if $1/2\\leq a< 1$,}\\\\ (4a+o(1))n & \\textrm{if $ a\\geq 1$.} \\end{array} \\right. \\]", "revisions": [ { "version": "v1", "updated": "2022-10-25T13:11:53.000Z" } ], "analyses": { "keywords": [ "ramsey number", "smallest positive integer", "common vertex", "red/blue edge coloring", "sufficiently large" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }