{ "id": "2210.13559", "version": "v1", "published": "2022-10-24T19:29:24.000Z", "updated": "2022-10-24T19:29:24.000Z", "title": "A new conjecture on rational points in families", "authors": [ "Daniel Loughran", "Nick Rome", "Efthymios Sofos" ], "comment": "47 pages, comments welcome", "categories": [ "math.NT", "math.AG" ], "abstract": "We prove asymptotics for Serre's problem on the number of diagonal planar conics with a rational point and use this to put forward a new conjecture on counting the number of varieties in a family which are everywhere locally soluble.", "revisions": [ { "version": "v1", "updated": "2022-10-24T19:29:24.000Z" } ], "analyses": { "subjects": [ "14G05", "11E20", "11D45", "14D10", "11N36" ], "keywords": [ "rational point", "conjecture", "diagonal planar conics", "serres problem" ], "note": { "typesetting": "TeX", "pages": 47, "language": "en", "license": "arXiv", "status": "editable" } } }