{ "id": "2210.13155", "version": "v1", "published": "2022-10-24T12:15:08.000Z", "updated": "2022-10-24T12:15:08.000Z", "title": "Centralizers of nilpotent elements in basic classical Lie superalgebras in good characteristic", "authors": [ "Leyu Han" ], "comment": "23 pages, 18 figures", "categories": [ "math.RT" ], "abstract": "Let \\mathfrak{g}=\\mathfrak{g}_{\\bar{0}}\\oplus\\mathfrak{g}_{\\bar{1}} be a basic classical Lie superalgebra over an algebraically closed field \\mathbb{K} whose characteristic p>0 is a good prime for \\mathfrak{g}. Let G_{\\bar{0}} be the reductive algebraic group over \\mathbb{K} such that \\mathrm{Lie}(G_{\\bar{0}})=\\mathfrak{g}_{\\bar{0}}. Suppose e\\in\\mathfrak{g}_{\\bar{0}} is nilpotent. Write \\mathfrak{g}^{e} for the centralizer of e in \\mathfrak{g} and \\mathfrak{z}(\\mathfrak{g}^{e}) for the centre of \\mathfrak{g}^{e}. We calculate a basis for \\mathfrak{g}^{e} and \\mathfrak{z}(\\mathfrak{g}^{e}) by using associated cocharacters \\tau:\\mathbb{K}^{\\times}\\rightarrow G_{\\bar{0}} of e. In addition, we give the classification of e which are reachable, strongly reachable or satisfy the Panyushev property for exceptional Lie superalgebras D(2,1;\\alpha), G(3) and F(4).", "revisions": [ { "version": "v1", "updated": "2022-10-24T12:15:08.000Z" } ], "analyses": { "subjects": [ "17B05", "17B20", "17B22", "17B25" ], "keywords": [ "basic classical lie superalgebra", "nilpotent elements", "centralizer", "characteristic", "exceptional lie superalgebras" ], "note": { "typesetting": "TeX", "pages": 23, "language": "en", "license": "arXiv", "status": "editable" } } }