{ "id": "2210.12868", "version": "v1", "published": "2022-10-23T22:05:11.000Z", "updated": "2022-10-23T22:05:11.000Z", "title": "Computing the Matching Distance of 2-Parameter Persistence Modules from Critical Values", "authors": [ "Asilata Bapat", "Robyn Brooks", "Celia Hacker", "Claudia Landi", "Barbara I. Mahler", "Elizabeth R. Stephenson" ], "comment": "28 pages, 6 figures. Comments welcome", "categories": [ "math.AT", "cs.CG" ], "abstract": "The exact computation of the matching distance for multi-parameter persistence modules is an active area of research in computational topology. Achieving an easily obtainable exact computation of this distance would allow multi-parameter persistent homology to be a viable option for data analysis. In this paper, we provide theoretical results for the computation of the matching distance in two dimensions along with a geometric interpretation of the lines through parameter space realizing this distance. The crucial point of the method we propose is that it can be easily implemented.", "revisions": [ { "version": "v1", "updated": "2022-10-23T22:05:11.000Z" } ], "analyses": { "subjects": [ "55N31", "62R40" ], "keywords": [ "matching distance", "critical values", "multi-parameter persistence modules", "multi-parameter persistent homology", "crucial point" ], "note": { "typesetting": "TeX", "pages": 28, "language": "en", "license": "arXiv", "status": "editable" } } }