{ "id": "2210.10941", "version": "v1", "published": "2022-10-20T00:42:00.000Z", "updated": "2022-10-20T00:42:00.000Z", "title": "Spectral theory of $p-adic$ Hermite operator", "authors": [ "Tianhong Zhao" ], "categories": [ "math-ph", "math.FA", "math.MP", "math.NT", "math.SP", "quant-ph" ], "abstract": "We give the definition of $p-adic$ Hermite operator and set up the $p-adic$ spectral measure. We compare the Archimedean case with non-Archimedean case. The structure of Hermite conjugate in $C^{*}$-Algebra corresponds to three canonical structures of $p-adic$ ultrametric Banach algebra: 1. mod $p$ reduction 2. Frobenius map 3. Teichm\\\"uller lift. There is a nature connection between Galois theory and Hermite operator spectral decomposition. The Galois group $\\mathrm{Gal}(\\bar{\\mathbb{F}}_p|\\mathbb{F}_p)$ generate the $p-adic$ spectral measure. We point out some relationships with $p-adic$ quantum mechanics: 1. creation operator and annihilation operator 2. $p-adic$ uncertainty principle.", "revisions": [ { "version": "v1", "updated": "2022-10-20T00:42:00.000Z" } ], "analyses": { "keywords": [ "spectral theory", "spectral measure", "hermite operator spectral decomposition", "ultrametric banach algebra", "hermite conjugate" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }