{ "id": "2210.10575", "version": "v1", "published": "2022-10-19T14:15:40.000Z", "updated": "2022-10-19T14:15:40.000Z", "title": "Polynomial \\(D(4)\\)-quadruples over Gaussian Integers", "authors": [ "Marija Bliznac Trebješanin", "Sanda Bujačić Babić" ], "categories": [ "math.NT" ], "abstract": "A set $\\{a, b, c, d\\}$ of four non-zero distinct polynomials in $\\mathbb{Z}[i][X]$ is said to be a Diophantine $D(4)$-quadruple if the product of any two of its distinct elements increased by 4 is a square of some polynomial in $\\mathbb{Z}[i][X]$. In this paper we prove that every $D(4)$-quadruple in $\\mathbb{Z}[i][X]$ is regular, or equivalently that the equation $$(a+b-c-d)^2=(ab+4)(cd+4)$$ holds for every $D(4)$-quadruple in $\\mathbb{Z}[i][X]$.", "revisions": [ { "version": "v1", "updated": "2022-10-19T14:15:40.000Z" } ], "analyses": { "subjects": [ "11D09", "11D45" ], "keywords": [ "gaussian integers", "non-zero distinct polynomials", "distinct elements", "diophantine" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }