{ "id": "2210.09119", "version": "v1", "published": "2022-10-17T14:11:32.000Z", "updated": "2022-10-17T14:11:32.000Z", "title": "Hasse norm principle for $M_{11}$ extensions", "authors": [ "Akinari Hoshi", "Kazuki Kanai", "Aiichi Yamasaki" ], "comment": "19 pages. arXiv admin note: text overlap with arXiv:2003.08253", "categories": [ "math.NT", "math.AG" ], "abstract": "Let $k$ be a field and $T$ be an algebraic $k$-torus. In 1969, over a global field $k$, Voskresenskii proved that there exists an exact sequence $0\\to A(T)\\to H^1(k,{\\rm Pic}\\,\\overline{X})^\\vee\\to Sha(T)\\to 0$ where $A(T)$ is the kernel of the weak approximation of $T$, $Sha(T)$ is the Shafarevich-Tate group of $T$, $X$ is a smooth $k$-compactification of $T$, ${\\rm Pic}\\,\\overline{X}$ is the Picard group of $\\overline{X}=X\\times_k\\overline{k}$ and $\\vee$ stands for the Pontryagin dual. On the other hand, in 1963, Ono proved that for the norm one torus $T=R^{(1)}_{K/k}(G_m)$ of $K/k$, $Sha(T)=0$ if and only if the Hasse norm principle holds for $K/k$. We determine $H^1(k,{\\rm Pic}\\, \\overline{X})$ for norm one tori $T=R^{(1)}_{K/k}(G_m)$ when the Galois group ${\\rm Gal}(L/k)$ of the Galois closure $L/k$ of $K/k$ is isomorphic to the Mathieu group $M_{11}$ of degree $11$. We also give a necessary and sufficient condition for the Hasse norm principle for such extensions $K/k$ with ${\\rm Gal}(L/k)\\simeq M_{11}$.", "revisions": [ { "version": "v1", "updated": "2022-10-17T14:11:32.000Z" } ], "analyses": { "subjects": [ "11E72", "12F20", "13A50", "14E08", "20C10", "20G15" ], "keywords": [ "extensions", "hasse norm principle holds", "global field", "exact sequence", "picard group" ], "note": { "typesetting": "TeX", "pages": 19, "language": "en", "license": "arXiv", "status": "editable" } } }