{ "id": "2210.08417", "version": "v1", "published": "2022-10-16T02:46:35.000Z", "updated": "2022-10-16T02:46:35.000Z", "title": "The Fokas-Lenells equation on the line: Global well-posedness with solitons", "authors": [ "Qiaoyuan Cheng", "Engui Fan" ], "comment": "30 pages", "categories": [ "math.AP", "math-ph", "math.MP" ], "abstract": "In this paper, we prove the existence of global solutions in $H^3(\\mathbb{R})\\cap H^{2,1}(\\mathbb{R})$ to the Fokas-Lenells (FL) equation on the line when the initial data includes solitons.A key tool in proving this result is a newly modified Darboux transformation, which adds or subtracts a soliton with given spectral and scattering parameters. In this way the inverse scattering transform technique is then applied to establish the global well-posedness of initial value problem with a finite number of solitons based on our previous results on the global well-posedness of the FL equation.", "revisions": [ { "version": "v1", "updated": "2022-10-16T02:46:35.000Z" } ], "analyses": { "subjects": [ "35P25", "35Q51", "35Q15", "35A01", "35G25" ], "keywords": [ "global well-posedness", "fokas-lenells equation", "initial value problem", "inverse scattering transform technique", "fl equation" ], "note": { "typesetting": "TeX", "pages": 30, "language": "en", "license": "arXiv", "status": "editable" } } }