{ "id": "2210.08370", "version": "v1", "published": "2022-10-15T20:41:03.000Z", "updated": "2022-10-15T20:41:03.000Z", "title": "A Proof of the $(n,k,t)$ Conjectures", "authors": [ "Stacie Baumann", "Joseph Briggs" ], "categories": [ "math.CO" ], "abstract": "An $(n,k,t)$-graph is a graph on $n$ vertices in which every set of $k$ vertices contain a clique on $t$ vertices. Tur\\'an's Theorem (complemented) states that the unique minimum $(n,k,2)$-graph is a disjoint union of cliques. We prove that minimum $(n,k,t)$-graphs are always disjoint unions of cliques for any $t$ (despite nonuniqueness of extremal examples), thereby generalizing Tur\\'an's Theorem and confirming two conjectures of Hoffman et al.", "revisions": [ { "version": "v1", "updated": "2022-10-15T20:41:03.000Z" } ], "analyses": { "subjects": [ "05C35" ], "keywords": [ "conjectures", "disjoint union", "unique minimum", "generalizing turans theorem", "despite nonuniqueness" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }