{ "id": "2210.08200", "version": "v1", "published": "2022-10-15T05:17:50.000Z", "updated": "2022-10-15T05:17:50.000Z", "title": "On ${\\mathrm{Ext}}^1$ for Drinfeld modules", "authors": [ "D. E. Kedzierski", "P. KrasoĊ„" ], "categories": [ "math.NT" ], "abstract": "Let $A={\\mathbb F}_q[t]$ be the polynomial ring over a finite field ${\\mathbb F}_q$ and let $\\phi $ and $\\psi$ be $A-$Drinfeld modules. In this paper we consider the group ${\\mathrm{Ext}}^1(\\phi ,\\psi )$ with the Baer addition. We show that if $\\mathrm{rank}\\phi >\\mathrm{rank}\\psi$ then $\\mathrm{Ext^1}(\\phi,\\psi)$ has the structure of a \\tm module. We give complete formulas describing this structure. We also establish duality between Ext groups for t-modules and the corresponding adjoint ${t}^{\\sigma}$-modules. Finally, we prove the existence of \"Hom-Ext\"$ six-term exact sequences for \\tm modules. As the category of t- modules is only additive (not abelian) this result is nontrivial.", "revisions": [ { "version": "v1", "updated": "2022-10-15T05:17:50.000Z" } ], "analyses": { "subjects": [ "11G09" ], "keywords": [ "drinfeld modules", "six-term exact sequences", "finite field", "ext groups", "baer addition" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }