{ "id": "2210.07825", "version": "v1", "published": "2022-10-14T13:56:17.000Z", "updated": "2022-10-14T13:56:17.000Z", "title": "Quenched invariance principle for biased random walks in random conductances in the sub-ballistic regime", "authors": [ "Alexander Fribergh", "Tanguy Lions", "Carlo Scali" ], "categories": [ "math.PR" ], "abstract": "We consider a biased random walk in positive random conductances on $\\mathbb{Z}^d$ for $d\\geq 5$. In the sub-ballistic regime, we prove the quenched convergence of the properly rescaled random walk towards a Fractional Kinetics.", "revisions": [ { "version": "v1", "updated": "2022-10-14T13:56:17.000Z" } ], "analyses": { "subjects": [ "60K37", "60F17", "60K50", "60G22" ], "keywords": [ "biased random walk", "quenched invariance principle", "sub-ballistic regime", "positive random conductances", "properly rescaled random walk" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }