{ "id": "2210.07635", "version": "v1", "published": "2022-10-14T08:31:42.000Z", "updated": "2022-10-14T08:31:42.000Z", "title": "Gauge fields on $B$-branes over $\\mathbb{CP}^n$", "authors": [ "Andrés Viña" ], "comment": "6 pages", "categories": [ "math.AG", "math-ph", "math.MP" ], "abstract": "Considering the $B$-branes over the complex projective space ${\\mathbb P}^n$ as the objects of the bounded derived category $D^b({\\mathbb P}^n)$, we prove that the cardinal of the set of holomorphic gauge fields on a given $B$-brane ${\\mathscr G}^{\\bullet}$ is $\\leq 1$. Moreover, the cardinal is $1$ iff each ${\\mathscr G}^p$ is isomorphic to a direct sum of copies of ${\\mathscr O}_{{\\mathbb P}^n}$.", "revisions": [ { "version": "v1", "updated": "2022-10-14T08:31:42.000Z" } ], "analyses": { "subjects": [ "53C05", "18G10" ], "keywords": [ "holomorphic gauge fields", "direct sum", "complex projective space", "bounded derived category", "isomorphic" ], "note": { "typesetting": "TeX", "pages": 6, "language": "en", "license": "arXiv", "status": "editable" } } }