{ "id": "2210.07579", "version": "v1", "published": "2022-10-14T07:13:37.000Z", "updated": "2022-10-14T07:13:37.000Z", "title": "Summation from the viewpoint of distributions", "authors": [ "Su Hu", "Min-Soo Kim" ], "comment": "19 pages", "categories": [ "math.NT", "math.CA" ], "abstract": "Let $\\{a_{1}, a_{2},\\ldots, a_{n},\\ldots\\}$ be a sequence of complex numbers. In this paper, inspired by a recent work of Sasane, we give an explanation of the sum $$a_{1}+2a_{2}+3a_{3}+\\cdots+na_{n}+\\cdots,$$ and more generally, for any $k\\in\\mathbb{N},$ the sum $$1^{k}a_{1} +2^{k}a_{2} +3^{k}a_{3} +\\cdots+n^{k}a_{n} +\\cdots,$$ from the viewpoint of distributions. As applications, we explain the following summation formulas \\begin{equation*} \\begin{aligned} 1^{k}-2^{k}+3^{k}-\\cdots&=-\\frac{E_{k}(0)}{2}, \\\\ 1^{k}+2^{k}+3^{k}+\\cdots&=-\\frac{B_{k+1}}{k+1}, \\\\ \\epsilon^{1}1^{k}+\\epsilon^{2}2^{k}+\\epsilon^{3}3^{k}+\\cdots&=-\\frac{B_{k+1}(\\epsilon)}{k+1}, \\end{aligned} \\end{equation*} where $E_{k}(0)$, $B_{k}$ and $B_{k}(\\epsilon)$ are the Euler polynomials at 0, the Bernoulli numbers and the Apostol-Bernoulli numbers, respectively.", "revisions": [ { "version": "v1", "updated": "2022-10-14T07:13:37.000Z" } ], "analyses": { "subjects": [ "46F12", "11B68", "11M06" ], "keywords": [ "distributions", "euler polynomials", "complex numbers", "apostol-bernoulli numbers", "summation formulas" ], "note": { "typesetting": "TeX", "pages": 19, "language": "en", "license": "arXiv", "status": "editable" } } }