{ "id": "2210.06329", "version": "v1", "published": "2022-10-12T15:49:37.000Z", "updated": "2022-10-12T15:49:37.000Z", "title": "Homogenization Theory of Elliptic System with Lower Order Terms for Dimension Two", "authors": [ "Wei Wang", "Ting Zhang" ], "categories": [ "math.AP" ], "abstract": "In this paper, we consider the homogenization problem for generalized elliptic systems $$ \\mathcal{L}_{\\va}=-\\operatorname{div}(A(x/\\va)\\nabla+V(x/\\va))+B(x/\\va)\\nabla+c(x/\\va)+\\lambda I $$ with dimension two. Precisely, we will establish the $ W^{1,p} $ estimates, H\\\"{o}lder estimates, Lipschitz estimates and $ L^p $ convergence results for $ \\mathcal{L}_{\\va} $ with dimension two. The operator $ \\mathcal{L}_{\\va} $ has been studied by Qiang Xu with dimension $ d\\geq 3 $ in \\cite{Xu1,Xu2} and the case $ d=2 $ is remained unsolved. As a byproduct, we will construct the Green functions for $ \\mathcal{L}_{\\va} $ with $ d=2 $ and their convergence rates.", "revisions": [ { "version": "v1", "updated": "2022-10-12T15:49:37.000Z" } ], "analyses": { "keywords": [ "lower order terms", "homogenization theory", "homogenization problem", "generalized elliptic systems", "lipschitz estimates" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }