{ "id": "2210.03367", "version": "v1", "published": "2022-10-07T07:19:16.000Z", "updated": "2022-10-07T07:19:16.000Z", "title": "Spectral radius conditions for fractional $[a,b]$-covered graphs", "authors": [ "Junjie Wang", "Jiaxin Zheng", "Yonglei Chen" ], "comment": "9 pages", "categories": [ "math.CO" ], "abstract": "A graph $G$ is called fractional $[a,b]$-covered if for every edge $e$ of $G$ there is a fractional $[a,b]$-factor with the indicator function $h$ such that $h(e)=1$. In this paper, we provide tight spectral radius conditions for graphs being fractional $[a,b]$-covered.", "revisions": [ { "version": "v1", "updated": "2022-10-07T07:19:16.000Z" } ], "analyses": { "subjects": [ "05C50" ], "keywords": [ "fractional", "covered graphs", "tight spectral radius conditions", "indicator function" ], "note": { "typesetting": "TeX", "pages": 9, "language": "en", "license": "arXiv", "status": "editable" } } }