{ "id": "2210.02333", "version": "v1", "published": "2022-10-05T15:38:35.000Z", "updated": "2022-10-05T15:38:35.000Z", "title": "Positive solutions for the fractional p-Laplacian via mixed topological and variational methods", "authors": [ "Antonio Iannizzotto" ], "comment": "18 pages", "categories": [ "math.AP" ], "abstract": "We study a nonlinear, nonlocal Dirichlet problem driven by the degenerate fractional p-Laplacian via a combination of topological methods (degree theory for operators of monotone type) and variational methods (critical point theory). We assume local conditions ensuring the existence of sub- and supersolutions. So we prove existence of two positive solutions, in both the coercive and noncoercive cases.", "revisions": [ { "version": "v1", "updated": "2022-10-05T15:38:35.000Z" } ], "analyses": { "subjects": [ "35R11", "47H11", "35A15" ], "keywords": [ "variational methods", "positive solutions", "mixed topological", "nonlocal dirichlet problem driven", "degenerate fractional p-laplacian" ], "note": { "typesetting": "TeX", "pages": 18, "language": "en", "license": "arXiv", "status": "editable" } } }