{ "id": "2209.13037", "version": "v1", "published": "2022-09-26T21:34:29.000Z", "updated": "2022-09-26T21:34:29.000Z", "title": "Powers of commutators in linear algebraic groups", "authors": [ "Benjamin Martin" ], "comment": "6 pages", "categories": [ "math.GR" ], "abstract": "Let ${\\mathcal G}$ be a linear algebraic group over $k$, where $k$ is an algebraically closed field, a pseudo-finite field or the valuation ring of a nonarchimedean local field. Let $G= {\\mathcal G}(k)$. We prove that if $\\gamma, \\delta\\in G$ such that $\\gamma$ is a commutator and $\\langle \\delta\\rangle= \\langle \\gamma\\rangle$ then $\\delta$ is a commutator. This generalises a result of Honda for finite groups. Our proof uses the Lefschetz Principle from first-order model theory.", "revisions": [ { "version": "v1", "updated": "2022-09-26T21:34:29.000Z" } ], "analyses": { "subjects": [ "20G15", "20F12", "03C98" ], "keywords": [ "linear algebraic group", "commutator", "nonarchimedean local field", "first-order model theory", "pseudo-finite field" ], "note": { "typesetting": "TeX", "pages": 6, "language": "en", "license": "arXiv", "status": "editable" } } }