{ "id": "2209.13003", "version": "v1", "published": "2022-09-26T20:37:22.000Z", "updated": "2022-09-26T20:37:22.000Z", "title": "One-dimensional Local Families of Complex K3 Surfaces", "authors": [ "Riccardo Carini", "Francesco ViganĂ²" ], "comment": "10 pages, 4 figures", "categories": [ "math.AG" ], "abstract": "For any complex K3 surface $X$, we construct a one-dimensional deformation in which all integers $\\rho$ with $0 \\leq \\rho \\leq 20$ occur as Picard numbers of some fibres. In contrast, we prove that the generic one-dimensional local family of K3 surfaces admits only $0$ and $1$ as Picard numbers of the fibres.", "revisions": [ { "version": "v1", "updated": "2022-09-26T20:37:22.000Z" } ], "analyses": { "subjects": [ "14J28" ], "keywords": [ "complex k3 surface", "picard numbers", "k3 surfaces admits", "one-dimensional deformation", "generic one-dimensional local family" ], "note": { "typesetting": "TeX", "pages": 10, "language": "en", "license": "arXiv", "status": "editable" } } }