{ "id": "2209.12603", "version": "v1", "published": "2022-09-26T11:49:57.000Z", "updated": "2022-09-26T11:49:57.000Z", "title": "Green function for an asymptotically stable random walk in a half space", "authors": [ "Denis Denisov", "Vitali Wachtel" ], "comment": "27 pages", "categories": [ "math.PR" ], "abstract": "We consider an asymptotically stable multidimensional random walk $S(n)=(S_1(n),\\ldots, S_d(n) )$. Let $\\tau_x:=\\min\\{n>0: x_{1}+S_1(n)\\le 0\\}$ be the first time the random walk $S(n)$ leaves the upper half-space. We obtain the asymptotics of $p_n(x,y):= P(x+S(n) \\in y+\\Delta, \\tau_x>n)$ as $n$ tends to infinity, where $\\Delta$ is a fixed cube. From that we obtain the local asymptotics for the Green function $G(x,y):=\\sum_n p_n(x,y)$, as $|y|$ and/or $|x|$ tend to infinity.", "revisions": [ { "version": "v1", "updated": "2022-09-26T11:49:57.000Z" } ], "analyses": { "subjects": [ "60G50", "60G40", "60J45", "60F17" ], "keywords": [ "asymptotically stable random walk", "green function", "half space", "asymptotically stable multidimensional random walk", "local asymptotics" ], "note": { "typesetting": "TeX", "pages": 27, "language": "en", "license": "arXiv", "status": "editable" } } }