{ "id": "2209.12535", "version": "v1", "published": "2022-09-26T09:31:56.000Z", "updated": "2022-09-26T09:31:56.000Z", "title": "Almost sure invariance principle of $β-$mixing time series in Hilbert space", "authors": [ "Jianya Lu", "Wei Biao Wu", "Zhijie Xiao", "Lihu Xu" ], "categories": [ "math.PR" ], "abstract": "Inspired by \\citet{Berkes14} and \\citet{Wu07}, we prove an almost sure invariance principle for stationary $\\beta-$mixing stochastic processes defined on Hilbert space. Our result can be applied to Markov chain satisfying Meyn-Tweedie type Lyapunov condition and thus generalises the contraction condition in \\citet[Example 2.2]{Berkes14}. We prove our main theorem by the big and small blocks technique and an embedding result in \\citet{gotze2011estimates}. Our result is further applied to the ergodic Markov chain and functional autoregressive processes.", "revisions": [ { "version": "v1", "updated": "2022-09-26T09:31:56.000Z" } ], "analyses": { "keywords": [ "sure invariance principle", "mixing time series", "hilbert space", "meyn-tweedie type lyapunov condition", "chain satisfying meyn-tweedie type" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }