{ "id": "2209.11369", "version": "v1", "published": "2022-09-23T01:59:50.000Z", "updated": "2022-09-23T01:59:50.000Z", "title": "Infinitesimal structure of log canonical thresholds", "authors": [ "Jihao Liu", "Fanjun Meng", "Lingyao Xie" ], "comment": "20 pages", "categories": [ "math.AG" ], "abstract": "We show that log canonical thresholds of fixed dimension are standardized. More precisely, we show that any sequence of log canonical thresholds in fixed dimension $d$ accumulates in a way which is i) either similar to how standard and hyperstandard sets accumulate, or ii) to log canonical thresholds in dimension $\\leq d-2$. This provides an accurate description on the infinitesimal structure of the set of log canonical thresholds. We also discuss similar behaviors of minimal log discrepancies, canonical thresholds, and K-semistable thresholds.", "revisions": [ { "version": "v1", "updated": "2022-09-23T01:59:50.000Z" } ], "analyses": { "subjects": [ "14E30", "14B05" ], "keywords": [ "log canonical thresholds", "infinitesimal structure", "minimal log discrepancies", "fixed dimension", "hyperstandard sets accumulate" ], "note": { "typesetting": "TeX", "pages": 20, "language": "en", "license": "arXiv", "status": "editable" } } }