{ "id": "2209.11323", "version": "v1", "published": "2022-09-22T21:30:02.000Z", "updated": "2022-09-22T21:30:02.000Z", "title": "A remark on the phase transition for the geodesic flow of a rank one surface of nonpositive curvature", "authors": [ "Keith Burns", "Dong Chen" ], "categories": [ "math.DS" ], "abstract": "For any rank 1 nonpositively curved surface $M$, it was proved by Burns-Climenhaga-Fisher-Thompson that for any $q<1$, there exists a unique equilibrium state $\\mu_q$ for $q\\varphi^u$, where $\\varphi^u$ is the geometric potential. We show that as $q\\to 1-$, the weak$^*$ limit of $\\mu_q$ is the restriction of the Liouville measure to the regular set.", "revisions": [ { "version": "v1", "updated": "2022-09-22T21:30:02.000Z" } ], "analyses": { "subjects": [ "37D25", "37D40" ], "keywords": [ "geodesic flow", "phase transition", "nonpositive curvature", "unique equilibrium state", "regular set" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }