{ "id": "2209.10755", "version": "v1", "published": "2022-09-22T03:13:31.000Z", "updated": "2022-09-22T03:13:31.000Z", "title": "Some branching laws for symmetric spaces", "authors": [ "Bent Orsted", "Birgit Speh" ], "categories": [ "math.RT" ], "abstract": "In this paper we consider the unitary symmetric spaces of the form X=U(p,q)/U(1)U(p,q-1) and their discrete series representations. Inspired by the work of A.Venkatesh and Y.Sekellarides on L-groups of p-adic spherical spaces we formulate and prove natural relative branching laws for the restriction to smaller subgroups of the same type and corresponding unitary spaces.We think of this as steps to formulation and proving Gan Gross Prasad conjectures for unitary spaces. Using period integral and some results of T.Kobayashi we prove an analogue of thesis conjectures.", "revisions": [ { "version": "v1", "updated": "2022-09-22T03:13:31.000Z" } ], "analyses": { "subjects": [ "22E46" ], "keywords": [ "branching laws", "proving gan gross prasad conjectures", "unitary spaces", "unitary symmetric spaces", "discrete series representations" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }