{ "id": "2209.10713", "version": "v1", "published": "2022-09-22T00:27:56.000Z", "updated": "2022-09-22T00:27:56.000Z", "title": "Lower bounds for the first eigenvalue of $p$-Laplacian on Kähler manifolds", "authors": [ "Kui Wang", "Shaoheng Zhang" ], "comment": "All comments are welcome!", "categories": [ "math.DG", "math.AP", "math.SP" ], "abstract": "We study the eigenvalue problem for the $p$-Laplacian on K\\\"ahler manifolds. Our first result is a lower bound for the first nonzero eigenvalue of the $p$-Laplacian on compact K\\\"ahler manifolds in terms of dimension, diameter, and lower bounds of holomorphic sectional curvature and orthogonal Ricci curvature for $p\\in (1, 2]$. Our second result is a sharp lower bound for the first Dirichlet eigenvalue of the $p$-Laplacian on compact K\\\"ahler manifolds with smooth boundary for $p\\in (1, \\infty)$. Our results generalize corresponding results for the Laplace eigenvalues on K\\\"ahler manifolds proved in [14].", "revisions": [ { "version": "v1", "updated": "2022-09-22T00:27:56.000Z" } ], "analyses": { "subjects": [ "35P15", "53C55" ], "keywords": [ "kähler manifolds", "first eigenvalue", "holomorphic sectional curvature", "first dirichlet eigenvalue", "sharp lower bound" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }