{ "id": "2209.09751", "version": "v1", "published": "2022-09-20T14:30:14.000Z", "updated": "2022-09-20T14:30:14.000Z", "title": "Global pseudo-differential operators on the Lie group $G= (-1,1)^n$", "authors": [ "Duván Cardona", "Roland Duduchava", "Arne Hendrickx", "Michael Ruzhansky" ], "comment": "34 Pages; 1 Figure", "categories": [ "math.AP", "math.CA", "math.FA" ], "abstract": "In this work we characterise the H\\\"ormander classes $\\symbClassOn{m}{\\rho}{\\delta}{\\group,\\textnormal{H\\\"or}}$ on the open manifold $\\group = (-1,1)^n$. We show that by endowing the open manifold $\\group = (-1,1)^n$ with a group structure, the corresponding global Fourier analysis on the group allows one to define a global notion of symbol on the phase space $\\group \\times \\R^n$. Then, the class of pseudo-differential operators associated to the global H\\\"ormander classes $\\symbClassOn{m}{\\rho}{\\delta}{\\group \\times \\R^n}$ recovers the H\\\"ormander classes $\\symbClassOn{m}{\\rho}{\\delta}{\\group,\\textnormal{loc}}$ defined by local coordinate systems. The analytic and qualitative properties of the classes $\\symbClassOn{m}{\\rho}{\\delta}{\\group \\times \\R^n}$ are presented in terms of the corresponding global symbols. In particular, $L^p$-Fefferman type estimates and Calder\\'on-Vaillancourt theorems are analysed, as well as the spectral properties of the operators.", "revisions": [ { "version": "v1", "updated": "2022-09-20T14:30:14.000Z" } ], "analyses": { "keywords": [ "global pseudo-differential operators", "lie group", "open manifold", "fefferman type estimates", "corresponding global fourier analysis" ], "note": { "typesetting": "TeX", "pages": 34, "language": "en", "license": "arXiv", "status": "editable" } } }