{ "id": "2209.09749", "version": "v1", "published": "2022-09-20T14:29:20.000Z", "updated": "2022-09-20T14:29:20.000Z", "title": "Reachable elements in basic classical Lie superalgebras", "authors": [ "Leyu Han" ], "comment": "24 pages, 9 tables, submitted to Journal of Algebra", "categories": [ "math.RT" ], "abstract": "Let \\mathfrak{g}=\\mathfrak{g}_{\\bar{0}}\\oplus\\mathfrak{g}_{\\bar{1}} be a basic classical Lie superalgebra over \\mathbb{C}, e\\in\\mathfrak{g}_{\\bar{0}} a nilpotent element and \\mathfrak{g}^{e} the centralizer of e in \\mathfrak{g}. We study various properties of nilpotent elements in \\mathfrak{g}, which have previously only been considered in the case of Lie algebras. In particular, we prove that e is reachable if and only if e satisfies the Panyushev property for \\mathfrak{g}=\\mathfrak{sl}(m|n), m\\neq n or \\mathfrak{psl}(n|n) and \\mathfrak{osp}(m|2n). For exceptional Lie superalgebras \\mathfrak{g}=D(2,1;\\alpha), G(3), F(4), we give the classification of e which are reachable, strongly reachable or satisfy the Panyushev property. In addition, we give bases for \\mathfrak{g}^{e} and its centre \\mathfrak{z}(\\mathfrak{g}^{e}) for \\mathfrak{g}=\\mathfrak{psl}(n|n), which completes results of Han on the relationship between \\dim\\mathfrak{g}^{e}, \\dim\\mathfrak{z}(\\mathfrak{g}^{e}) and the labelled Dynkin diagrams for all basic classical Lie superalgebras.", "revisions": [ { "version": "v1", "updated": "2022-09-20T14:29:20.000Z" } ], "analyses": { "keywords": [ "basic classical lie superalgebra", "reachable elements", "nilpotent element", "panyushev property", "exceptional lie superalgebras" ], "note": { "typesetting": "TeX", "pages": 24, "language": "en", "license": "arXiv", "status": "editable" } } }