{ "id": "2209.09748", "version": "v1", "published": "2022-09-20T14:28:47.000Z", "updated": "2022-09-20T14:28:47.000Z", "title": "Minimal parabolic subgroups and automorphism groups of Schubert varieties", "authors": [ "S. Senthamarai Kannan", "Pinakinath Saha" ], "comment": "To appear in Journal of Lie Theory, 28 pages", "categories": [ "math.AG", "math.RT" ], "abstract": "Let $G$ be a simple simply-laced algebraic group of adjoint type over the field $\\mathbb{C}$ of complex numbers, $B$ be a Borel subgroup of $G$ containing a maximal torus $T$ of $G.$ In this article, we show that $\\omega_\\alpha$ is a minuscule fundamental weight if and only if for any parabolic subgroup $Q$ containing $B$ properly, there is no Schubert variety $X_{Q}(w)$ in $G/Q$ such that the minimal parabolic subgroup $P_{\\alpha}$ of $G$ is the connected component, containing the identity automorphism of the group of all algebraic automorphisms of $X_{Q}(w).$", "revisions": [ { "version": "v1", "updated": "2022-09-20T14:28:47.000Z" } ], "analyses": { "subjects": [ "14M15", "14M17" ], "keywords": [ "minimal parabolic subgroup", "schubert variety", "automorphism groups", "simple simply-laced algebraic group", "minuscule fundamental weight" ], "note": { "typesetting": "TeX", "pages": 28, "language": "en", "license": "arXiv", "status": "editable" } } }