{ "id": "2209.09045", "version": "v1", "published": "2022-09-19T14:35:41.000Z", "updated": "2022-09-19T14:35:41.000Z", "title": "Borel summability of the 1/N expansion in quartic O(N)-vector models", "authors": [ "Léonard Ferdinand", "Razvan Gurau", "Carlos I. Perez-Sanchez", "Fabien Vignes-Tourneret" ], "comment": "23 pages, 2 figures", "categories": [ "math-ph", "math.MP" ], "abstract": "We consider a quartic O(N)-vector model. Using the Loop Vertex Expansion, we prove the Borel summability in 1/N along the real axis of the partition function and of the connected correlations of the model. The Borel summability holds uniformly in the coupling constant, as long as the latter belongs to a cardioid like domain of the complex plane, avoiding the negative real axis.", "revisions": [ { "version": "v1", "updated": "2022-09-19T14:35:41.000Z" } ], "analyses": { "keywords": [ "loop vertex expansion", "borel summability holds", "complex plane", "partition function", "negative real axis" ], "note": { "typesetting": "TeX", "pages": 23, "language": "en", "license": "arXiv", "status": "editable" } } }