{ "id": "2209.08995", "version": "v1", "published": "2022-09-19T13:17:23.000Z", "updated": "2022-09-19T13:17:23.000Z", "title": "Data-Driven Control of Stochastic Systems: An Innovation Estimation Approach", "authors": [ "Yibo Wang", "Chao Shang", "Dexian Huang" ], "categories": [ "math.OC" ], "abstract": "Recent years have witnessed a booming interest in the data-driven paradigm for predictive control. However, under noisy data ill-conditioned solutions could occur, causing inaccurate predictions and unexpected control behaviours. In this article, we explore a new route toward data-driven control of stochastic systems through active offline learning of innovation data, which gives an answer to the critical question of how to derive an optimal data-driven model from a noise-corrupted dataset. A generalization of the Willems' fundamental lemma is developed for non-parametric representation of input-output-innovation trajectories, provided realizations of innovation are precisely known. This yields a model-agnostic unbiased output predictor and paves the way for data-driven receding horizon control, whose behaviour is identical to the ``oracle\" solution of certainty-equivalent model-based control with measurable states. For efficient innovation estimation, a new low-rank subspace identification algorithm is developed. Numerical simulations show that by actively learning innovation from input-output data, remarkable improvement can be made over present formulations, thereby offering a promising framework for data-driven control of stochastic systems.", "revisions": [ { "version": "v1", "updated": "2022-09-19T13:17:23.000Z" } ], "analyses": { "keywords": [ "data-driven control", "stochastic systems", "innovation estimation approach", "low-rank subspace identification algorithm", "noisy data ill-conditioned solutions" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }