{ "id": "2209.08775", "version": "v1", "published": "2022-09-19T06:02:59.000Z", "updated": "2022-09-19T06:02:59.000Z", "title": "Operator estimates for Neumann sieve problem", "authors": [ "Andrii Khrabustovskyi" ], "comment": "33 pages, 3 figures", "categories": [ "math.AP", "math.SP" ], "abstract": "Let $\\Omega$ be a domain in $\\mathbb{R}^n$, $\\Gamma$ be a hyperplane intersecting $\\Omega$, $\\varepsilon>0$ be a small parameter, and $D_{k,\\varepsilon}$, $k=1,2,3\\dots$ be a family of small \"holes\" in $\\Gamma\\cap\\Omega$; when $\\varepsilon \\to 0$, the number of holes tends to infinity, while their diameters tends to zero. Let $\\mathscr{A}_\\varepsilon$ be the Neumann Laplacian in the perforated domain $\\Omega_\\varepsilon=\\Omega\\setminus\\Gamma_\\varepsilon$, where $\\Gamma_\\varepsilon=\\Gamma\\setminus (\\cup_k D_{k,\\varepsilon})$ (\"sieve\"). It is well-known that if the sizes of holes are carefully chosen, $\\mathscr{A}_\\varepsilon$ converges in the strong resolvent sense to the Laplacian on $\\Omega\\setminus\\Gamma$ subject to the so-called $\\delta'$-conditions on $\\Gamma$. In the current work we improve this result: under rather general assumptions on the shapes and locations of the holes we derive estimates on the rate of convergence in terms of $L^2\\to L^2$ and $L^2\\to H^1$ operator norms; in the latter case a special corrector is required.", "revisions": [ { "version": "v1", "updated": "2022-09-19T06:02:59.000Z" } ], "analyses": { "subjects": [ "35B27", "35B40", "35P05", "47A55" ], "keywords": [ "neumann sieve problem", "operator estimates", "strong resolvent sense", "special corrector", "diameters tends" ], "note": { "typesetting": "TeX", "pages": 33, "language": "en", "license": "arXiv", "status": "editable" } } }