{ "id": "2209.08405", "version": "v1", "published": "2022-09-17T21:18:58.000Z", "updated": "2022-09-17T21:18:58.000Z", "title": "A Steklov-spectral approach for solutions of Dirichlet and Robin boundary value problems", "authors": [ "Kthim Imeri", "Nilima Nigam" ], "categories": [ "math.NA", "cs.NA", "math.AP", "math.SP" ], "abstract": "In this paper we revisit an approach pioneered by Auchmuty to approximate solutions of the Laplace- Robin boundary value problem. We demonstrate the efficacy of this approach on a large class of non-tensorial domains, in contrast with other spectral approaches for such problems. We establish a spectral approximation theorem showing an exponential fast numerical evaluation with regards to the number of Steklov eigenfunctions used, for smooth domains and smooth boundary data. A polynomial fast numerical evaluation is observed for either non-smooth domains or non-smooth boundary data. We additionally prove a new result on the regularity of the Steklov eigenfunctions, depending on the regularity of the domain boundary. We describe three numerical methods to compute Steklov eigenfunctions.", "revisions": [ { "version": "v1", "updated": "2022-09-17T21:18:58.000Z" } ], "analyses": { "subjects": [ "35R30", "35C20" ], "keywords": [ "robin boundary value problem", "steklov-spectral approach", "steklov eigenfunctions", "smooth boundary data", "exponential fast numerical evaluation" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }