{ "id": "2209.07865", "version": "v1", "published": "2022-09-16T11:39:10.000Z", "updated": "2022-09-16T11:39:10.000Z", "title": "Norm inflation and ill-posedness for the Fornberg-Whitham equation", "authors": [ "Jinlu Li", "Xing Wu", "Yanghai Yu", "Weipeng Zhu" ], "categories": [ "math.AP" ], "abstract": "In this paper, we prove that the Cauchy problem for the Fornberg-Whitham equation is not locally well-posed in $B^s_{p,r}(\\R)$ with $(s,p,r)\\in (1,1+\\frac1p)\\times[2,\\infty)\\times [1,\\infty]$ or $(s,p,r)\\in \\{1\\}\\times[2,\\infty)\\times [1,2]$ by showing norm inflation phenomena of the solution for some special initial data.", "revisions": [ { "version": "v1", "updated": "2022-09-16T11:39:10.000Z" } ], "analyses": { "keywords": [ "fornberg-whitham equation", "ill-posedness", "special initial data", "showing norm inflation phenomena", "cauchy problem" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }