{ "id": "2209.07283", "version": "v1", "published": "2022-08-23T12:01:42.000Z", "updated": "2022-08-23T12:01:42.000Z", "title": "On an extreme value law for the unipotent flow on $\\mathrm{SL}_2(\\mathbb{R})/\\mathrm{SL}_2(\\mathbb{Z})$", "authors": [ "Maxim Kirsebom", "Keivan Mallahi-Karai" ], "comment": "13 pages, 5 figures, comments welcome!", "categories": [ "math.DS", "math.NT", "math.PR" ], "abstract": "We study an extreme value distribution for the unipotent flow on the modular surface $\\mathrm{SL}_2(\\mathbb{R})/\\mathrm{SL}_2(\\mathbb{Z})$. Using tools from homogenous dynamics and geometry of numbers we prove the existence of a continuous distribution function $F(r)$ for the normalized deepest cusp excursions of the unipotent flow. We find closed analytic formulas for $F(r)$ for $r \\in [-\\frac{1}{2} \\log 2, \\infty)$, and establish asymptotic behavior of $F(r)$ as $r \\to -\\infty$.", "revisions": [ { "version": "v1", "updated": "2022-08-23T12:01:42.000Z" } ], "analyses": { "subjects": [ "37A17", "60G70", "11H06" ], "keywords": [ "extreme value law", "unipotent flow", "normalized deepest cusp excursions", "extreme value distribution", "modular surface" ], "note": { "typesetting": "TeX", "pages": 13, "language": "en", "license": "arXiv", "status": "editable" } } }