{ "id": "2209.06258", "version": "v1", "published": "2022-09-13T18:35:29.000Z", "updated": "2022-09-13T18:35:29.000Z", "title": "Cluster Nature of Quantum Groups", "authors": [ "Linhui Shen" ], "comment": "32 pages, 9 figures", "categories": [ "math.RT", "math.AG", "math.QA" ], "abstract": "We present a rigid cluster model to realize the quantum group ${\\bf U}_q(\\mathfrak{g})$ for $\\mathfrak{g}$ of type ADE. That is, we prove that there is a natural Hopf algebra isomorphism from the quantum group ${\\bf U}_q(\\mathfrak{g})$ to a quotient algebra of the Weyl group invariants of the Fock-Goncharov quantum cluster algebra $\\mathcal{O}_q(\\mathscr{P}_{{\\rm G},\\odot})$. By applying the quantum duality of cluster algebras, we show that ${\\bf U}_q(\\mathfrak{g})$ admits a natural basis $\\bar{\\bf \\Theta}$ whose structural coefficients are in $\\mathbb{N}[q^{\\frac{1}{2}}, q^{-\\frac{1}{2}}]$. The basis $\\bar{\\bf \\Theta}$ satisfies an invariance property under Lusztig's braid group action, the Dynkin automorphisms, and the star anti-involution.", "revisions": [ { "version": "v1", "updated": "2022-09-13T18:35:29.000Z" } ], "analyses": { "subjects": [ "17B37", "13F60", "53D30" ], "keywords": [ "quantum group", "cluster nature", "fock-goncharov quantum cluster algebra", "lusztigs braid group action", "natural hopf algebra isomorphism" ], "note": { "typesetting": "TeX", "pages": 32, "language": "en", "license": "arXiv", "status": "editable" } } }