{ "id": "2209.05976", "version": "v1", "published": "2022-09-13T13:19:06.000Z", "updated": "2022-09-13T13:19:06.000Z", "title": "Local boundedness for $p$-Laplacian with degenerate coefficients", "authors": [ "Peter Bella", "Mathias Schäffner" ], "categories": [ "math.AP" ], "abstract": "We study local boundedness for subsolutions of nonlinear nonuniformly elliptic equations whose prototype is given by $\\nabla \\cdot (\\lambda |\\nabla u|^{p-2}\\nabla u)=0$, where the variable coefficient $0\\leq\\lambda$ and its inverse $\\lambda^{-1}$ are allowed to be unbounded. Assuming certain integrability conditions on $\\lambda$ and $\\lambda^{-1}$ depending on $p$ and the dimension, we show local boundedness. Moreover, we provide counterexamples to regularity showing that the integrability conditions are optimal for every $p>1$.", "revisions": [ { "version": "v1", "updated": "2022-09-13T13:19:06.000Z" } ], "analyses": { "keywords": [ "degenerate coefficients", "integrability conditions", "study local boundedness", "nonlinear nonuniformly elliptic equations", "variable coefficient" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }