{ "id": "2209.05875", "version": "v1", "published": "2022-09-13T10:51:49.000Z", "updated": "2022-09-13T10:51:49.000Z", "title": "A geometric approach to inequalities for the Hilbert--Schmidt norm", "authors": [ "Ali Zamani" ], "comment": "12 pages", "categories": [ "math.FA" ], "abstract": "We define angle $\\Theta_{X,Y}$ between non-zero Hilbert--Schmidt operators $X$ and $Y$ by $\\cos\\Theta_{_{X,Y}} = \\frac{{\\rm Re}{\\rm Tr}(Y^*X)}{{\\|X\\|}_{_2}{\\|Y\\|}_{_2}}$, and give some of its essentially properties. It is shown, among other things, that \\begin{align*} \\big|\\cos\\Theta_{_{X,Y}}\\big|\\leq \\min\\left\\{\\sqrt{\\cos\\Theta_{_{|X^*|,|Y^*|}}}, \\sqrt{\\cos\\Theta_{_{|X|,|Y|}}}\\right\\}. \\end{align*} It enables us to provide alternative proof of some well-known inequalities for the Hilbert--Schmidt norm. In particular, we apply this inequality to prove Lee's conjecture [Linear Algebra Appl. 433 (2010), no.~3, 580--584] as follows \\begin{align*} {\\big\\|X + Y\\big\\|}_{_2} \\leq \\sqrt{\\frac{\\sqrt{2} + 1}{2}}\\,{\\big\\|\\,|X| + |Y|\\,\\big\\|}_{_2}. \\end{align*} A numerical example is presented to show the constant $\\sqrt{\\frac{\\sqrt{2} + 1}{2}}$ is smallest possible. Other related inequalities for the Hilbert--Schmidt norm are also considered.", "revisions": [ { "version": "v1", "updated": "2022-09-13T10:51:49.000Z" } ], "analyses": { "subjects": [ "47A63", "47A30", "47B10" ], "keywords": [ "hilbert-schmidt norm", "geometric approach", "inequality", "non-zero hilbert-schmidt operators", "linear algebra appl" ], "note": { "typesetting": "TeX", "pages": 12, "language": "en", "license": "arXiv", "status": "editable" } } }