{ "id": "2209.05029", "version": "v1", "published": "2022-09-12T05:23:54.000Z", "updated": "2022-09-12T05:23:54.000Z", "title": "Horosymmetric limits of Kähler-Ricci flow on Fano $G$-manifolds", "authors": [ "Gang Tian", "Xiaohua Zhu" ], "categories": [ "math.DG", "math.AG" ], "abstract": "In this paper, we prove that on a Fano $\\mathbf G$-manifold $(M,J)$, the Gromov-Hausdorff limit of K\\\"ahler-Ricci flow with initial metric in $2\\pi c_1(M)$ must be a $\\mathbb Q$-Fano horosymmetric variety $M_\\infty$ which admits a singular K\\\"ahler-Ricci soliton. Moreover, we show that $M_\\infty$ is a limit of $\\mathbb C^*$-degeneration of $(M,J)$ induced by the soliton holomorphic vector field. A similar result can be also proved for K\\\"ahler-Ricci flows on any Fano horosymmetric manifolds.", "revisions": [ { "version": "v1", "updated": "2022-09-12T05:23:54.000Z" } ], "analyses": { "subjects": [ "53C25", "32Q20", "58D25", "14L10" ], "keywords": [ "kähler-ricci flow", "horosymmetric limits", "soliton holomorphic vector field", "fano horosymmetric variety", "fano horosymmetric manifolds" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }