{ "id": "2209.01692", "version": "v1", "published": "2022-09-04T20:54:58.000Z", "updated": "2022-09-04T20:54:58.000Z", "title": "A note on the integrality of volumes of representations", "authors": [ "Sungwoon Kim" ], "comment": "12 pages", "categories": [ "math.GT" ], "abstract": "Let $\\Gamma$ be a torsion-free, non-uniform lattice in $\\mathrm{SO}(2n,1)$. We present an elementary, combinatorial-geometrical proof of a theorem of Bucher, Burger, and Iozzi which states that the volume of a representation $\\rho:\\Gamma\\to\\mathrm{SO}(2n,1)$, properly normalized, is an integer if $n$ is greater than or equal to $2$.", "revisions": [ { "version": "v1", "updated": "2022-09-04T20:54:58.000Z" } ], "analyses": { "subjects": [ "53C24", "22E40" ], "keywords": [ "representation", "integrality", "non-uniform lattice", "elementary" ], "note": { "typesetting": "TeX", "pages": 12, "language": "en", "license": "arXiv", "status": "editable" } } }