{ "id": "2209.01644", "version": "v1", "published": "2022-09-04T15:35:22.000Z", "updated": "2022-09-04T15:35:22.000Z", "title": "An introduction to decoupling and harmonic analysis over $\\mathbb{Q}_p$", "authors": [ "Zane Kun Li" ], "comment": "26 pages", "categories": [ "math.NT", "math.CA" ], "abstract": "The goal of this expository paper is to provide an introduction to decoupling by working in the simpler setting of decoupling for the parabola over $\\mathbb{Q}_p$. Over $\\mathbb{Q}_p$, commonly used heuristics in decoupling are significantly easier to make rigorous over $\\mathbb{Q}_p$ than over $\\mathbb{R}$ and such decoupling theorems over $\\mathbb{Q}_p$ are still strong enough to derive interesting number theoretic conclusions.", "revisions": [ { "version": "v1", "updated": "2022-09-04T15:35:22.000Z" } ], "analyses": { "keywords": [ "harmonic analysis", "decoupling", "introduction", "derive interesting number theoretic conclusions", "expository paper" ], "note": { "typesetting": "TeX", "pages": 26, "language": "en", "license": "arXiv", "status": "editable" } } }