{ "id": "2209.01462", "version": "v1", "published": "2022-09-03T16:46:37.000Z", "updated": "2022-09-03T16:46:37.000Z", "title": "On functions with given boundary data and convex constraints on the gradient", "authors": [ "Camilla Brizzi" ], "categories": [ "math.AP" ], "abstract": "Let $\\Omega\\subset\\mathbb{R}^{d}$ be an open set. Given a boundary datum $g$ on $\\partial\\Omega$ and a function $K:\\bar {\\Omega} \\to\\mathcal{K}$, the family of all compact convex subsets of $\\mathbb{R}^{d}$, we prove the existence of functions $u:\\Omega\\to\\mathbb{R}$ such that $u=g$ on $\\partial\\Omega$ and $\\nabla u(x)\\in K(x)$ a.e. and we investigate the regularity of such solutions on the set $\\mathcal{U} \\subset \\bar{\\Omega}$ of points at which they all coincide.", "revisions": [ { "version": "v1", "updated": "2022-09-03T16:46:37.000Z" } ], "analyses": { "subjects": [ "49K24", "49N15", "49N60", "35R70", "58B20" ], "keywords": [ "boundary datum", "convex constraints", "compact convex subsets", "open set", "regularity" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }