{ "id": "2209.01256", "version": "v1", "published": "2022-09-02T20:04:30.000Z", "updated": "2022-09-02T20:04:30.000Z", "title": "A PDE approach for regret bounds under partial monitoring", "authors": [ "Erhan Bayraktar", "Ibrahim Ekren", "Xin Zhang" ], "comment": "Keywords: machine learning, expert advice framework, bandit problem, asymptotic expansion, Wasserstein derivative", "categories": [ "math.PR", "cs.LG", "math.OC" ], "abstract": "In this paper, we study a learning problem in which a forecaster only observes partial information. By properly rescaling the problem, we heuristically derive a limiting PDE on Wasserstein space which characterizes the asymptotic behavior of the regret of the forecaster. Using a verification type argument, we show that the problem of obtaining regret bounds and efficient algorithms can be tackled by finding appropriate smooth sub/supersolutions of this parabolic PDE.", "revisions": [ { "version": "v1", "updated": "2022-09-02T20:04:30.000Z" } ], "analyses": { "keywords": [ "pde approach", "partial monitoring", "finding appropriate smooth sub/supersolutions", "verification type argument", "forecaster" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }