{ "id": "2209.00753", "version": "v1", "published": "2022-09-01T23:45:19.000Z", "updated": "2022-09-01T23:45:19.000Z", "title": "An estimate for F-jumping numbers via the roots of the Bernstein-Sato polynomial", "authors": [ "Mircea Mustaţă" ], "comment": "8 pages", "categories": [ "math.AG", "math.AC" ], "abstract": "Given a smooth complex algebraic variety $X$ and a nonzero regular function $f$ on $X$, we give an effective estimate for the difference between the jumping numbers of $f$ and the $F$-jumping numbers of a reduction $f_p$ of $f$ to characteristic $p\\gg 0$, in terms of the roots of the Bernstein-Sato polynomial $b_f$ of $f$. As an application, we show that if $b_f$ has no roots of the form $-{\\rm lct}(f)-n$, with $n$ a positive integer, then the $F$-pure threshold of $f_p$ is equal to the log canonical threshold of $f$ for $p\\gg 0$ with $(p-1){\\rm lct}(f)\\in {\\mathbf Z}$.", "revisions": [ { "version": "v1", "updated": "2022-09-01T23:45:19.000Z" } ], "analyses": { "subjects": [ "13A35", "14F18", "14F10" ], "keywords": [ "bernstein-sato polynomial", "f-jumping numbers", "smooth complex algebraic variety", "nonzero regular function", "pure threshold" ], "note": { "typesetting": "TeX", "pages": 8, "language": "en", "license": "arXiv", "status": "editable" } } }