{ "id": "2208.14860", "version": "v1", "published": "2022-08-31T13:42:34.000Z", "updated": "2022-08-31T13:42:34.000Z", "title": "Chi-boundedness of graphs containing no cycles with $k$ chords", "authors": [ "Joonkyung Lee", "Shoham Letzter", "Alexey Pokrvoskiy" ], "comment": "38 pages, 13 figures", "categories": [ "math.CO" ], "abstract": "We prove that the family of graphs containing no cycle with exactly $k$-chords is $\\chi$-bounded, for $k$ large enough or of form $\\ell(\\ell-2)$ with $\\ell \\ge 3$ an integer. This verifies (up to a finite number of values $k$) a conjecture of Aboulker and Bousquet (2015).", "revisions": [ { "version": "v1", "updated": "2022-08-31T13:42:34.000Z" } ], "analyses": { "keywords": [ "graphs containing", "chi-boundedness", "finite number", "conjecture" ], "note": { "typesetting": "TeX", "pages": 38, "language": "en", "license": "arXiv", "status": "editable" } } }