{ "id": "2208.14817", "version": "v1", "published": "2022-08-31T12:37:20.000Z", "updated": "2022-08-31T12:37:20.000Z", "title": "Integrable systems, Nijenhuis geometry and Lauricella bi-flat structures", "authors": [ "Paolo Lorenzoni", "Sara Perletti" ], "categories": [ "math.DG", "math-ph", "math.MP" ], "abstract": "Combining the construction of integrable systems of hydrodynamic type starting from the Fr\\\"olicher-Nijenhuis bicomplex $(d,d_L)$ associated with a (1,1)-tensor field $L$ with vanishing Nijenhuis torsion with the construction of flat structures starting from integrable systems of hydrodynamic type we define multi-parameter families of bi-flat structures $(\\nabla,e,\\circ,\\nabla^*,*,E)$ associated with Fr\\\"olicher-Nijenhuis bicomplexes. We call these structures Lauricella bi-flat structures since in the n-dimensional semisimple case (n-1) flat coordinates of r are Lauricella functions.", "revisions": [ { "version": "v1", "updated": "2022-08-31T12:37:20.000Z" } ], "analyses": { "keywords": [ "integrable systems", "nijenhuis geometry", "hydrodynamic type", "structures lauricella bi-flat structures", "define multi-parameter families" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }