{ "id": "2208.14605", "version": "v1", "published": "2022-08-31T02:49:42.000Z", "updated": "2022-08-31T02:49:42.000Z", "title": "Representations of $(A,B)$ C*-correspondences", "authors": [ "Alonso DelfĂ­n" ], "comment": "AMSLaTeX; 17 pages", "categories": [ "math.OA", "math.FA" ], "abstract": "We study representations of Hilbert bimodules on pairs of Hilbert spaces. If $A$ is a C*-algebra and $\\mathsf{X}$ is a right Hilbert $A$-module, we use such representations to faithfully represent the C*-algebras $\\mathcal{K}_A(\\mathsf{X})$ and $\\mathcal{L}_A(\\mathsf{X})$. We then extend this theory to define and prove the existence of representations of C*-correspondences on a pair of Hilbert spaces. As an application of such representations, we give necessary and sufficient conditions on an $(A,B)$ C*-correspondences to admit a Hilbert $A$-$B$-bimodule structure. Finally, we show how to represent the interior tensor product of two C*-correspondences.", "revisions": [ { "version": "v1", "updated": "2022-08-31T02:49:42.000Z" } ], "analyses": { "subjects": [ "46L08" ], "keywords": [ "hilbert spaces", "interior tensor product", "hilbert bimodules", "study representations", "right hilbert" ], "note": { "typesetting": "TeX", "pages": 17, "language": "en", "license": "arXiv", "status": "editable" } } }