{ "id": "2208.14351", "version": "v1", "published": "2022-08-30T15:55:23.000Z", "updated": "2022-08-30T15:55:23.000Z", "title": "Perverse sheaves on symmetric products of the plane", "authors": [ "Tom Braden", "Carl Mautner" ], "comment": "45 pages", "categories": [ "math.AG", "math.RT" ], "abstract": "For any field $k$, we give an algebraic description of the category $\\mathrm{Perv}_\\mathscr{S}(S^n (\\mathbb{C}^2),k)$ of perverse sheaves on the $n$-fold symmetric product of the plane $S^n(\\mathbb{C}^2)$ constructible with respect to its natural stratification and with coefficients in $k$. As part of our description we obtain an analogue of modular Springer theory for the Hilbert scheme $\\mathrm{Hilb}^n(\\mathbb{C}^2)$ of $n$ points in the plane with its Hilbert-Chow morphism.", "revisions": [ { "version": "v1", "updated": "2022-08-30T15:55:23.000Z" } ], "analyses": { "keywords": [ "perverse sheaves", "modular springer theory", "fold symmetric product", "natural stratification", "hilbert-chow morphism" ], "note": { "typesetting": "TeX", "pages": 45, "language": "en", "license": "arXiv", "status": "editable" } } }