{ "id": "2208.14090", "version": "v1", "published": "2022-08-30T09:08:47.000Z", "updated": "2022-08-30T09:08:47.000Z", "title": "Bounds for invariants of numerical semigroups and Wilf's Conjecture", "authors": [ "Marco D'Anna", "Alessio Moscariello" ], "comment": "6 pages", "categories": [ "math.NT", "math.CO" ], "abstract": "Given coprime positive integers $g_1 < \\ldots < g_e$, the Frobenius number $F=F(g_1,\\ldots,g_e)$ is the largest integer not representable as a linear combination of $g_1,\\ldots,g_e$ with non-negative integer coefficients. Let $n$ denote the number of all representable non-negative integers less than $F$; Wilf conjectured that $F+1 \\le e n$. We provide bounds for $g_1$ and for the type of the numerical semigroup $S=\\langle g_1,\\ldots,g_e \\rangle$ in function of $e$ and $n$, and use these bounds to prove that $F+1 \\le q e n$, where $q= \\left \\lceil \\frac{F+1}{g_1} \\right \\rceil$, and $F+1 \\le e n^2$. Finally, we give an alternative, simpler proof for the Wilf conjecture if the numerical semigroup $S=\\langle g_1,\\ldots,g_e \\rangle$ is almost-symmetric.", "revisions": [ { "version": "v1", "updated": "2022-08-30T09:08:47.000Z" } ], "analyses": { "subjects": [ "05A99", "11B75", "20M14" ], "keywords": [ "numerical semigroup", "wilfs conjecture", "invariants", "frobenius number", "non-negative integer coefficients" ], "note": { "typesetting": "TeX", "pages": 6, "language": "en", "license": "arXiv", "status": "editable" } } }