{ "id": "2208.13989", "version": "v1", "published": "2022-08-30T05:04:56.000Z", "updated": "2022-08-30T05:04:56.000Z", "title": "Wave functions of the Hydrogen atom in the momentum representation", "authors": [ "M. Kirchbach", "J. A. Vallejo" ], "categories": [ "quant-ph", "math-ph", "math.MP" ], "abstract": "We construct the integral transform passing from the space representation to the momentum representation for the Hydrogen atom using polar spherical coordinates. The resulting radial wave functions are explicitly given in terms of complex finite expansions of Gegenbauer functions of the first and second kind, or in terms of (elementary) trigonometric functions. We show their symmetry under the $SO(4)$ group, and their equivalence with those of Lombardi and Oglivie.", "revisions": [ { "version": "v1", "updated": "2022-08-30T05:04:56.000Z" } ], "analyses": { "subjects": [ "81V45", "44A15", "33C47" ], "keywords": [ "hydrogen atom", "momentum representation", "resulting radial wave functions", "complex finite expansions", "integral transform" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }