{ "id": "2208.13623", "version": "v1", "published": "2022-08-29T14:12:56.000Z", "updated": "2022-08-29T14:12:56.000Z", "title": "Regular bi-interpretability of Chevalley groups over local rings", "authors": [ "Elena Bunina" ], "categories": [ "math.GR", "math.LO" ], "abstract": "In this paper we prove that if $G(R)=G_\\pi (\\Phi,R)$ $(E(R)=E_{\\pi}(\\Phi, R))$ is an (elementary) Chevalley group of rank $> 1$, $R$ is a local ring (with $\\frac{1}{2}$ for the root systems ${\\mathbf A}_2, {\\mathbf B}_l, {\\mathbf C}_l, {\\mathbf F}_4, {\\mathbf G}_2$ and with $\\frac{1}{3}$ for ${\\mathbf G}_{2})$, then the group $G(R)$ (or $(E(R)$) is regularly bi-interpretable with the ring~$R$. As a consequence of this theorem, we show that the class of all Chevalley groups over local rings (with the listed restrictions) is elementary definable, i.\\,e., if for an arbitrary group~$H$ we have $H\\equiv G_\\pi(\\Phi, R)$, than there exists a ring $R'\\equiv R$ such that $H\\cong G_\\pi(\\Phi,R')$.", "revisions": [ { "version": "v1", "updated": "2022-08-29T14:12:56.000Z" } ], "analyses": { "keywords": [ "chevalley group", "local ring", "regular bi-interpretability", "root systems", "elementary" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }