{ "id": "2208.13272", "version": "v1", "published": "2022-08-28T19:07:05.000Z", "updated": "2022-08-28T19:07:05.000Z", "title": "Uniqueness of entire solutions to quasilinear equations of p-Laplace type", "authors": [ "Nguyen Cong Phuc", "Igor E. Verbitsky" ], "comment": "31 pages", "categories": [ "math.AP" ], "abstract": "We prove the uniqueness property for a class of entire solutions to the equation \\begin{equation*} \\left\\{ \\begin{array}{ll} -{\\rm div}\\, \\mathcal{A}(x,\\nabla u) = \\sigma, \\quad u\\geq 0 \\quad \\text{in } \\mathbb{R}^n, \\\\ \\displaystyle{\\liminf_{|x|\\rightarrow \\infty}}\\, u = 0, \\end{array} \\right. \\end{equation*} where $\\sigma$ is a nonnegative locally finite measure in $\\mathbb{R}^n$, absolutely continuous with respect to the $p$-capacity, and ${\\rm div}\\, \\mathcal{A}(x,\\nabla u)$ is the $\\mathcal{A}$-Laplace operator, under standard growth and monotonicity assumptions of order $p$ ($1